• Liebe User, bitte beachtet folgendes Thema: Was im Forum passiert, bleibt im Forum! Danke!
  • Hallo Gemeinde! Das Problem leidet zurzeit unter technischen Problemen. Wir sind da dran, aber das Zeitkontingent ist begrenzt. In der Zwischenzeit dürfte den meisten aufgefallen sein, dass das Erstellen von Posts funktioniert, auch wenn das Forum erstmal eine Fehlermeldung wirft. Um unseren Löschaufwand zu minimieren, bitten wir euch darum, nicht mehrmals auf 'Post Reply' zu klicken, da das zur Mehrfachposts führt. Grußworte.

Vektoridentität falsch ?

Mitglied seit
30.05.2000
Beiträge
543
Reaktionen
0
Tag zusammen,
ich diskutier schon seit einiger Zeit mit zwei Physikern und wir sind uns einig, dass folgende Vektoridentität falsch ist :

identitaet.jpg


Dabei ist A ein beliebiges Vektorfeld, nabla halt nabla, das dicke r der Ortsvektor (x,y,z)_transponiert, das schlanke r einfach der Abstand zum Nullpunkt und r Dach der Einheitsvektor in radialer Richtung. Mir würde es auch schon reichen, wenn mir jemand bestätigt, dass die linke Seite nichts anderes als Vektor A ist.

Gruß Chose
 

MesH

Guest
Was ist denn A * \nabla (also der Punkt da), was soll das für ne Art Verknüpfung sein? Skalarprodukt? Und das was rauskommt wird wieder skalar mit r genommen? Diese ganze Notation verwirrt mich unendlich :ugly:
 

voelkerballtier

Coverage, Staff, Coding
Mitglied seit
01.12.2003
Beiträge
1.603
Reaktionen
0
also so wie es dort steht ist es falsch - möglicherweise ist nicht \vec{r} sondern nur r (also der Betrag) auf der linken Seite gemeint? dann könnte sowas wie rechts rauskommen (ohne nachgerechnet zu haben)

das was jetzt da steht ergibt jedenfalls A , da hast du völlig recht.

€: mir fällt grad auch auf dass rechts einmal \hat{r} und einmal \vec{r}/r verwendet wird, was ja aber beides das gleiche ist - irgendwie ist das inkonsistent.
 
Zuletzt bearbeitet:
Mitglied seit
30.05.2000
Beiträge
543
Reaktionen
0
A * nabla ist das Skalarprodukt, gibt also einen Skalar bzw. einen Operator, der auf jede Komponente von Vektor r angewendet wird.

e: @voelkerballtier: genau sowas hab ich auch schon versucht, allerdings ohne erfolg. Bei deinem vorschlag würde dann leider auch links ein skalar stehen und rechts ein vektor, weswegen es das schonmal nicht sein kann
 
Mitglied seit
30.05.2000
Beiträge
543
Reaktionen
0
Antwort auf voelkers edit: du hast in beiden fällen recht... es ist das gleiche und so etwas so hinzuschreiben sorgt nur für verwirrung...
 
Mitglied seit
12.07.2003
Beiträge
1.384
Reaktionen
4
Ort
Aachen
hm...ich kann nur mit Halbwissen dienen, aber A * nabla ergibt, wie schon gesagt ein Skalar, welches doch dann mit einem Vektor multipliziert immernoch einen einzelnen Vektor beschreibt und eindeutigt nicht das Vektorfeld A liefert, was ja der rechten Seite entspräche.

?(
 
Mitglied seit
30.05.2000
Beiträge
543
Reaktionen
0
Die linke Seite ist gleich Vektorfeld A, ich hab es jetzt auch in Kugelkoordinaten gezeigt. Die rechte Seite ist dagegen eindeutig nicht gleich Vektorfeld A. Damit ist die Identität Käse.

trotzdem danke an alle

kann meinetwegen geclosed werden
 
Oben